
E. A. KLOP, H. KRABBENDAM AND J. KROON 613 

Cascarano et al. (1982) that the S&R results only 
apply to an experiment carried out with both 
wavelengths at the high-frequency side of the absorp- 
tion edge is erroneous. 

For acentric reflections the S&R method is more 
flexible than the ratio technique since it offers the 
possibility of using relative scaling schemes other 
than (16). 
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Abstract 

Changes in shape of 1D profiles of small-single- 
crystal Bragg reflections have been examined in terms 
of the shapes of the components which, convoluted 
together, generate the profile. In most practical cases, 
operational features require truncation of the angular 
scan range of measurement and the conventional 
linear formula for scan range, to = a + b tan 0, is then 
not strictly valid. A more appropriate relationship 
involves a combination of root mean square (RMS) 
and linear (LIN) forms, 

to = [(p,)2 + (q ,  tan 0)2] 1/2 + (p"+ q" tan 0) 

where p' is associated with the leading and trailing 
edges of the distribution of the combined 0-invariant 
components and p" with its plateau width while q' is 
associated with the leading and trailing edges of the 
distribution of the wavelength component and q" with 
the separation of its outer peaks if there are more 
than one. For operational purposes, this relationship 
can be substituted with adequate precision by to = 
[c2+(d tan 0)2] 1/2, but the parameters c and d do 
not then have a simple relationship to the 0-invariant 
and 0-variant components. Use of a conventional 
linear formula when a RMS one is the relevant one 
can mean that, in the lower 0 range, the estimate of 
integrated intensity will be too high and, in the higher 
0 range, it will be too low, so that, with increasing 
0, a positive then a negative systematic error is intro- 
duced and not merely a negative error as the conven- 
tional interpretation of truncation holds. The con- 
clusions of the present analysis are tested against 
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experimental data where the conventional treatment 
for truncation failed [Eisenstein & Hirshfeld (1983). 
Acta Cryst. B39, 61-75]. For the estimation of 
integrated intensity, and hence of structure factors, 
which are consistent over the operational range of 0, 
a RMS formula for the scan range is advisable. 

Introduction 

Diffractometry of a small single crystal involves 
measurement of a large number of Bragg reflections 
distributed over a wide range of scattering angle, 0. 
To ensure that these reflections are placed on a 
mutually consistent and therefore directly compar- 
able basis, the measurements for each reflection 
should be carried out over an exactly equivalent 
region of diffraction space, determined by the angular 
ranges of the respective contributing components 
(Mathieson & Stevenson, 1985). If one wishes to 
ensure that this condition is truly satisfied, then 2D 
measurements in Ato, A20 space have the advantage 
that the appropriate region can be defined readily. 

Until position-sensitive detectors with an authentic 
resolution of (say) 50 txm are commonly available to 
facilitate 2D data collection of individual Bragg 
reflections in diffraction space, it is likely that the 
majority of crystal structure studies will continue to 
be effected using 1D measurement of the counter 
profile varying to. As one moves from reflection to 
reflection, this involves adjusting the scan range [and 
the detector aperture, except in the case of the o.,/20 
scan mode (Mathieson, 1983)] in some systematic 
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614 THE RELATION OF SCAN RANGE AND REFLECTION SHAPE 

way to ensure that the consistency condition holds, 
within the intrinsic limitations of 1D measurement 
(Mathieson, 1984a). 

The formula which has been customarily used to 
determine the size of the scan range under these 
circumstances is the linear (LIN) form, to= 
a + b tan 0 (e.g. Arndt & Willis, 1966; Clegg, 1984). 
The first term allows for the contributions of com- 
ponents which are 0-invariant, such as the source size 
and crystal specimen mosaic distribution (if 
isotropic), while the second term allows for the effect 
of wavelength dispersion. Numerical values of a and 
b used in practice by crystallographers often owe 
more to perceived traditional wisdom than to experi- 
mental exploration; see, however, a recent empirical 
study by Destro & Marsh (1987) and also Destro 
(1988). 

Recently, following studies of profile shape by 
H6che, Schulz, Weber, Belzner, Wolf & Wulf (1986) 
using monochromated synchrotron radiation, the 
linear form for the scan-range formula has been 
queried by Mathieson (1988), attention being drawn 
to the possibility that, in such situations, a different, 
root mean square (RMS), form of relationshi~ is more 
appropriate, namely to = [(p)2+ (q tan 0)2] I/ or, with 
a monochromator crystal M, [(p,)2 + (q,(t - train)) 2] I/2 
where t = tan 0/ tan 0M and tmin corresponds to the 
condition of minimum wavelength dispersion. 

Despite the  long history of profile measurement, 
the possibility that particular functional forms for the 
scan range formula are allied to different shapes of 
Bragg reflection profiles and, consequently, influen- 
ced by the shapes of their constituent components 
does not appear to have been examined previously. 
This possibility would appear to be a matter of some 
interest for the procedural details of 1 D measurement 
when 'best' results are sought, e.g. in deformation 
electron density studies. 

Relevant features of reflection profiles 

Truncation 

For the estimation of the integrated intensity of 
single-crystal Bragg reflections, theory implies that 
integration should extend to infinity. Indeed, underly- 
ing the conventional approach to the measurement 
procedure is the assumption that the scan width is 
sufficient to ensure that every reflection is fully con- 
tained within the central measurement points (e.g. 
Clegg, 1984). For any practicable experimental pro- 
cedure, this is clearly impossible; see, for instance, 
Fig. 1 of Dam, Harkema & Feil (1983). Some realistic 
restriction (truncation) on the Ato range [and the A20 
(aperture) range, where necessary] must be set. Once 
decided upon, these limits have to be maintained in 
such a way as to ensure that measurements on all 
reflections are placed on the same basis and hence 
yield comparable values of integrated intensity. 

The limits within which the signal intensity is 
ascribed to the Bragg reflection and outside which it 
is used for correctional background estimation con- 
stitute the truncation limits. What one requires to aim 
for is to establish truncation limits which are con- 
sistent as one moves from reflection to reflection. The 
magnitude of the systematic errors which arise from 
failure to adjust the scan range to maintain consistent 
truncation have been examined theoretically, but only 
within the context of the linear form, by Denne 
(1977a, b), for the case of an al,t~2 doublet. He 
devised a correction formula which has been tested 
with varying results by several authors [see references 
in Destro & Marsh (1987)]. 

Under conditions of non-consistent truncation, one 
is, in fact, transposing part of the 'peak" into 'back- 
ground' or vice versa and so modifying the balance 
or ratio between these two regions in such a relatively 
ill-defined manner that the subsequent numerical cor- 
rection may not be able to provide appropriate com- 
pensation. It follows that incorrect truncation may 
introduce errors of a systematic but not readily iden- 
tifiable nature. If, however, one can achieve the condi- 
tions for consistent truncation, then the subdivision 
into 'peak'  and 'background'  is maintained constant 
as also will be the subtraction of 'background'  from 
'peak'. Even if other factors obtrude, such as thermal 
diffuse scattering, the maintenance of a consistent 
region in diffraction space for intensity measurement 
ensures a basic compatibility of reflections. 

Given that, in principle, we are after consistent 
truncation, we need to consider what we mean by it 
in operational terms, how we aim for it and how we 
ascertain that we are, in fact, achieving that goal. 

General features of  a Bragg reflection 

We need first to consider the general features of 
any single peak 'counter '  1D profile. Firstly, it has a 
maximum value, secondly, we can give a figure to its 
width at half maximum (WHM) and, thirdly, it has 
a width at its base. Since this last is in the region 
where signal is becoming indistinguishable from 
noise, this is the least straightforward feature to estab- 
lish. Nevertheless, it is the truncation limits corre- 
sponding to this width which we must attempt either 
to identify or, at least, be able to set on a rational basis. 

First, we need to gain insight into these diagnostic 
features by examining a number of models involving 
different functional forms for the components which, 
convoluted together, generate the profile. 

Models 

Singlet wavelength peak case 

Consider the basic situation involving two com- 
ponents, one invariant with respect to 0 [say, the 
source emissivity, or(-- a), but it could include other 
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invariant components],  and the other, functionally 
dependent on 0, corresponding to the wavelength 
dispersion, A, of the singlet peak (= b tan 0). 

In 2D zato, za20 space, the situation is shown in Fig. 
l ( a )  for (i) square wave, (ii) trapezoidal and (iii) 
Gaussian components. 

Projection of these 2D distributions onto the zato 
axis yields the profile shapes (Fig. lb) ,  which also 
correspond to the convolution of the projections on 
to of the components tr and A respectively (see 
Alexander & Smith, 1962). It is of interest to examine  
how these cases change over a range of 0, from small 
to large. The integral of the A distribution with change 
in 0 is held constant in any one situation. 

Aco 

(i) 

i 

A20 

(a) (b) 

A¢0 

. °  

A2O 

(a) (b) 

(iii) 

Aeo 

,:<S 
A20 

(a) (b) 

Fig. 1. (a) Two-dimensional Aw, A20 distributions corresponding 
to the convolution of a 0-invariant component (tr) and a 0- 
variant component (;t) for (i) square wave, (ii) trapezoidal and 
(iii) Gaussian components. (b) The corresponding one- 
dimensional profiles derived by projection along A20. 

For square-wave components at low angles, i.e. 
when b tan 0 < a, the convoluted result has a base 
(a + b tan 0), a plateau width of (a - b tan 0) and a 
width at half maximum (WHM) of a. For larger 
scattering angles, as the magnitude of b tan 0 reaches 
that of a, the shape becomes triangular and sub- 
sequently the WHM becomes b tan 0 while the width 
at the base remains (a + b tan 0). In other words, the 
functional relationship of the base is (a+b tan 0) 
while that of the WHM is first constant and then rises 
linearly with increase in 0. 

Where the shapes of the components are 
trapezoidal, Fig. l(ii), the projected results have 
similarities to those for square waves. If the h (or 
b tan 0) function is reduced to a delta function, then 
the result is the same as in Fig. l(i). With the b tan 0 
function larger but still less than the o- function, the 
result is a somewhat rounded figure, with the base 
width a linear combination of the base widths of the 
two components. The WHM corresponds to the 
WHM of the larger component,  namely a (o-). The 
peak plateau width is dependent on the side slopes 
of the two components or and h. 

When the two components are each Gaussian in 
shape, Fig. l(iii), the convoluted 1D resultant is, of 
course, Gaussian, the peak being single valued. The 
WHM is [(p)2+ (q tan 0)2] 1/2 irrespective of whether 
p or q tan 0 is the greater (p and q tan 0 are the WHM 
of the individual components).  The base is theoreti- 
cally infinite but if one defines a practical outer limit 
as (say) 0.01 (or 0.001) of the peak value then the 
base corresponds to n x (WHM) [or m x (WHM)] 
where n = 2 . 5 7 8  and m=3.157 .  On this basis, the 
appropriate scan range would therefore be of the 
form [ ( p , ) 2 +  (q, tan 0)2] 1/2 where p ' =  np (or mp) and 
q'= nq (or mq). The decision here as to the scan 
range is in fact more straightforward than for rec- 
tilinear shapes in that it can be set in terms of the 
(observable) WHM. 

Although the simple combination of two Gaussians 
is likely to apply only in special cases, e.g. with 
monochromated synchrotron radiation (Mathieson, 
1988), it is nevertheless of interest to consider this 
situation and compare the consequent scan range 
involving the RMS form with that for the conven- 
tional linear form. For this purpose, we set up a series 
of synthetic 1D profiles composed of a non-dispersive 
Gaussian component  [source (say)] convoluted 
with a single-peak dispersive Gaussian component  
(wavelength) for values of k tan 0 from 0 to 1-0 in 
steps of 0.1. The profiles of the latter component  are 
normalized to the same integral value so that all 
convoluted profiles have the same integral (to 
infinity). (The value of k in practice would vary with 
the range of 0 in the particular experimental set up.) 
The scan range values corresponding to the RMS 
relationship are determined where the profile ordin- 
ates drop to (say) 1% of the convoluted peak, this 
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Table 1. Scan ranges 

k tan  0 tOLl N (.ORM S (.OLIN//O)RMS /LIN IRMS ILIN/IRMS 

0"0 0"6 0"6 1"0 97"615 97"615 1'0 
0"l 0"8 0"6928 1"1547 99"441 97"615 1"0187 
0"2 1"0 0"9165 1"0911 98"957 97"615 1"0138 
0"3 1"2 1"20 1'0 97-615 97"615 l '0 
0"4 ! '4 1 "510 0"9272 95'651 97"615 0-9?99 
0"5 1"6 1"8330 0"8729 93"425 97"615 0"9571 
0"6 1-8 2-1633 0-8321 91.205 97.615 0.9343 
0.7 2"0 2-4980 0-8006 89.121 97-615 0.9130 
0-8 2-2 2'8355 0.7759 87.231 97.615 0-8936 
0.9 2.4 3-1749 0.7559 85.527 97.615 0.8762 
1'0 2'6 3.5157 0.7395 84.020 97-615 0-8607 

choice being arbitrary and selected merely for 
demonstrat ion.  The resultant values are shown in 
Table 1 and yield the curve in Fig. 2(a).  Since we 
presume that we are treating some quasi-realistic situ- 
ation, the scan-range curve corresponding to the 
l inear relat ionship should cross the RMS curve at 
some intermediate  point  in the range. We have 
arbitrarily chosen this to be k tan 0 = 0.3. The resul- 
tant scan-range values corresponding to the l inear  
relat ionship are also given in Table 1 and yield the 
straight line in Fig. 2(a).  Below k tan 0 =0 .3 ,  it is 
evident that the RMS scan range would be less than 
that due to the l inear scan range, while above 
k tan 0 = 0.3 it would be greater and progressively so 
as 0 increased. 

Following the convent ional  procedure for deter- 
mining the total peak intensity (P)  between the scan- 
range limits, the background estimate (B) from the 
ordinates at the scan-range limits and the abscissa 
between the scan-range limits, the integrated intensity 
being ( P -  B), estimates of  the integrated intensity of 

4.0 

3 0  

Scan ~ 1  Range N 2.0 

1.C 

(a) 
0.0 0.2 0.4 0.6 0.8 1.0 ktan0 

1.0511....,, 
r" \ I(1:1MS)'95 I 

" 0.2 0A 0,6 0.8 1 . 0 k t a n 0  

Fig. 2. (a) Plots of a scan-range variation with k tan 0 correspond- 
ing to the linear formula, and to the RMS formula, coincident 
at 0=0 ° and at the cross-over point, k tan 0=0.3. (b) Plot of 
the ratio I L 1 N / I R M S  versus k tan 0. 

the series of  synthetic profiles were made  at the 1% 
level for both the RMS and the l inear cases (see Table 
1).* The estimates for the RMS scan relat ionship are 
constant with change in 0 while those for the l inear 
form are init ial ly larger and then progressively smal- 
ler. The trend ILIN/IRM S versus k tan 0 is indicated 
in Fig. 2(b). 

It must be stressed that the synthetic data treated 
above are in tended purely for i l lustration of  the trend 
associated with use of  the l inear relat ionship rather 
than the RMS relat ionship in situations which can 
be model led  essentially by Gaussians  for both the 
non-dispersive and dispersive components.  

In many  laboratory experimental  arrangements ,  the 
distr ibution representing the source emissivity cannot  
be represented by a single Gaussian but involves a 
plateau, like Fig. l( i i) .  For this combinat ion,  the 
appropriate  scan-range formula  involves a RMS com- 
ponent,  p',  from the convolution of the Gauss ian  
defined by the leading and trailing edges of the source 
distr ibution and q' from the wavelength dispersion,  
plus a l inear component ,  p", from the d isp lacement  
component  of  the source emissivity. 

to=[(p ' )2+(q ' tanO)2]~/2+p ''. (1) 

In such cases, the curve determining the scan range 
will lie between the RMS and the l inear form. The 
curvature trend illustrated in Fig. 2 will still apply  
but will be less extreme. 

Lorentzian peaks 

So far the peaks or peak components  have been 
discussed in terms of  Gauss ian  shapes. While  this 
may be a valid approximat ion  for some beams 
monochromated  by reflection from an extended-face 
crystal, the shapes of characteristic lines are known 
to be Lorentzian. How does this affect the scan range? 

If the effective abscissa range of the Lorentzian is 
large, i.e. effectively infinite, then the convolut ion of  
two Lorentzians is such that the W H M  of the resultant 
corresponds to the sum of  the W H M s  of the individual  
components ,  which would correspond to a l inear  
relat ionship for the scan range. If, however,  the 
abscissa range is restricted, for example  by apertures 
or monochromat iza t ion ,  then the W H M s  will tend to 
combine in a manner  closer to RMS fashion. 

Doublet wavelength peak case 

In the case of commonly  used characteristic X-ray 
sources, these are generally doublet  in character,  
a~, a2. This means  that the separation of  the two 
peaks, (zaA/A)tan 0 (=q" ) ,  has to be taken into 

* It is recognized that use of the Gaussian profile curve without 
normal 'noise' background is a gross simplification and is utilized 
simply to reveal the form of difference resulting from the truncation 
formulae. 
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account. As we have noted above, the separat ion of  
the peaks makes a l inear  contr ibut ion to the scan 
range. This does not take account of  the 'na tura l '  
widths of  the two peaks outside the peak separat ion 
(see Alexander  & Smith, 1962; Burbank,  1964; 
Mathieson,  1984b).* If these edges can be model led  
as Gauss ian  then their contribution,  q', will be a RMS 
component .  

As a result, the formula  appropriate  to this 
situation is 

w = [ ( p ' ) 2 + ( q ' t a n O ) 2 ] ] / 2 + ( p " + q " t a n O ) .  (2) 

In the case of  (say) Mo Ka~t~2, the line widths at 
ha l f  height  are 0.29 x 10 -3 A (a~) and 0.32 x 10 -3 
(a2) with the a l a 2  separat ion being 4 .28x  10 -3 A. 
While these line widths at HM are small  relative to 
the o~la 2 separat ion,  their  contr ibut ion to scan range 
depends  on the point  at which t runcat ion is assumed 
to occur (n t imes the WHM).  In the terms of 
Mathieson (1984b), q' would  correspond to twice the 
01~10~ 2 separat ion and q" to the o~1o~ 2 separation. 

The appropr ia te  weights of  the RMS and l inear  
components  in (2) are dependen t  on the part icular  
exper imental  parameters ,  inc luding those of  the 
specimen crystal and,  for best results, these require 
to be establ ished in each experiment.  

Provided that one is only concerned with the 
general curvature trend with 8, one can use an 
approximat ion ,  to = [(c)2+ (d tan 8)2] 1/2, but then 
the terms c and d no longer have direct physical  
significance. 

Comparison with the measurement data o f  Eisenstein 
& Hirshfeld (1983) 

In virtually all publ i shed  structure analyses,  the 
effects of  t runcat ion have not been recognized as such 
and have been absorbed in least-squares refinement,  
main ly  by the thermal  parameters.  Where recognized, 
they have been corrected by use of  the Denne  (1977a) 
formula  which,  as Denne  showed, has effects s imilar  
to a temperature-factor  contribution.  The basic  prob- 
lem with the least-squares procedure is that it operates 
only in relat ion to recognized, and therefore included,  
factors. It cannot  ident i fy  an unspecif ied factor but  
accommodates  it within one or more of the nomina ted  
factors. So it is not easy to get hold of  recorded 

* In the series of studies by Hope & Hirshfeld and their associ- 
ates, namely Hope & Ottersen (1978), Ottersen & Hope (1979), 
Eisenstein (1979), Hirshfeld & Hope (1980), Ottersen, Almhof & 
Hope (1980), Ottersen, Almhof & Carle (1982), Eisenstein & Hirsh- 
feld (1983) and the study by Destro & Marsh (1987), the wavelength 
dispersion component was set as the angular separation of ctla 2 = 

S ° . This meant that no account was taken of the contribution of 
the leading and trailing edges of the doublet lines (cfi Alexander 
& Smith etc. above). Note, however, that, although Eisenstein & 
Hirshfeld (1983) made measurements with (1.2+1-5S) °, their 
integrated intensity estimates were based on the range (0.8+ S) °. 

exper imental  data which can be used to test the con- 
clusions in the present  paper.  

The work of  Eisenstein & Hirshfeld  (1983) has the 
rare dist inct ion that it involved a careful analysis  of  
the measurements  of  the individual  reflection peaks 
and background and presented these in summary  
form as average changes over specified variables.  In 
addit ion,  there was no attempt to obscure the 
existence of  their  idiosyncrat ic  variation with 0 which 
became evident. The authors stated frankly that, in 
their view, 'no plausible  t runcat ion model  could 
account for this behaviour ' .  As a result, they provide 
a unique (in the proper  sense of  the word) set of  
measurements  which are uncorrected for t runcat ion 
and,  having been recorded at l iquid N2 temperature  
and therefore relatively extensive in 8, are con- 
sequently ideal ly suited to allow test of  the deduct ions 
presented here. 

As part of  their  data analysis,  Eisenstein & Hirsh- 
feld derived essentially the ratio of  Fo/Fc for groups 
of reflections with increasing 8. The result was 
unexpected  and was descr ibed in their  words as fol- 
lows: 'Up to 0 -  35 °, the ratio lay in the region 1.03, 
then it d ipped  rapidly  to a m i n i m u m  of  0.92, ca 
0 = 6 0  °. After this, it rose to values above 1.11.' 
( M a x i m u m  0 was ca 76°.) We have taken the liberty 
of  sketching this t rend in Fig. 3 as a funct ion of  0 
and as a funct ion of  (1/2) tan 8. 

If  one compares  Fig. 3(b) with Fig. 2(b),  there is 
a close paral lel  in respect to the trends, up to 0 = 60 ° 
in Fig. 3(b). Basically, the discrepancy is positive to 
ca 0 = 35 ° then goes negative to 0 = 60 °, the cross-over 
point  being in the region 0 = 30-35 °. We therefore 
conclude that, for the region 0 = 0 to 60 ° (which 
constitutes the major  intensi ty weight of  the data and 
hence dominates  the resultant  deformat ion  density),  
the discrepancy between Fo and Fc rests essentially 

kFc 1.0 

" ' "  0"91 20 40 60 80 ° 0 

(a) 

kF-•e 1.0 

0"9~ 0 ~ . 8  1.0 1.2 1.4 1.6 1.8 2.0 1/2tanO 

(b) 

Fig. 3. Sketch of the idiosyncratic relationship of the ratio Fo/F¢ 
described by Eisenstein & Hirshfeld (1983) (a) versus 0 and (b) 
versus (1/2) tan 0. 
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with the measurement of Fo and is due to the use of 
a linear formula rather than a RMS formula for the 
scan range. 

There still remains the trend with 0 from ca 60 to 
76 ° . It seems evident that this is due to an additional 
factor not directly allied to truncation. Eisenstein & 
Hirshfeld supply evidence which may be indicative. 
With their careful examination of their reflection data 
they found that there 'was a linear dependence of the 
apparent background on the associated reflections, 
due to the intrusion of the Bragg reflections into the 
"background" regions. But, contrary to the expected 
behaviour, the shape of the dependence was found 
to reach a maximum near 0 = 70 ° and to decrease at 
higher values of 0.' In this context, one should note 
also the indicator of change in the direction of the 
curve in Fig. l (a)  of Eisenstein & Hirshfeld from ca 
60 ° onward. The overall evidence tends to confirm 
the cause of this trend of Fo/Fc as involving a feature 
not significantly obvious in the region below 0 = 60 °. 
It would appear that it involves a scattering process 
which can contribute to the Bragg peak but does not 
obtrude into the region normally classed as back- 
ground, so that, with increase in 0, P -  B (as assessed 
normally) is increasing while B~ P is decreasing. This 
matter is treated further under Discussion. 

If these features are the basis for an explanation 
of the idiosyncratic plot of Fo/F,., it is clear that the 
original temperature parameters, derived without the 
application of appropriate corrections, are likely to 
be questionable, as Eisenstein & Hirshfeld observe, 
and it may be that resultant errors in temperature 
factors contribute to the shape of the Fo/F¢ curve at 
higher 0. 

Discussion 

From this examination, it is evident that accurate 
estimation of structure-factor values from single- 
crystal Bragg reflection 1D profiles is dependent not 
only on experimental care in the measurement 
operations but also on a proper recognition of the 
theoretical basis of the operations involved and of 
the specific experiment under way. It is therefore 
somewhat surprising to realize that the basic question 
of the relationship between the formula for the scan 
range and the specific shapes of the components 
which, convoluted together, establish the profile 
shape, has received no attention during the long 
annals of this measurement procedure; one which is 
basic to the derivation of integrated intensities and 
structure factors.* The present exercise, primitive as 
it is, shows clearly that the conventional linear for- 
mula for determining scan range is to be associated 

* While it true that 'profile fitting' has been explored (cf. Clegg, 
1981), in general this has been based on an ad hoc approach and, 
while not always specified, has relied essentially on the applicability 
of the linear scan-range relationship. 

essentially with components whose shapes are such 
that the integral is operationally to infinity. It also 
shows that, for 'rounded' (Gaussian) components 
with a finite mean square width, a RMS formula is 
more appropriate. Since the majority of shapes of 
components involved in diffraction experiments are 
mainly of the rounded type, it would appear that an 
appropriate mixture of RMS and linear should be 
used in practice. Only if it is established experi- 
mentally that the scan range truly encompasses the 
whole reflection is the linear form appropriate. 

It has been shown above (Fig. 2b) that if one 
restricts oneself to a linear formula for scan range 
where a RMS formula is actually appropriate, it can 
lead to two regions of opposite effect on the integrated 
intensity estimate, below and above the cross-over 
value of 0. In the past it was assumed that the effect 
started at 0--0  °, i.e. the cross-over point coincided 
with 0--0  ° and was always in one direction - to 
reduce the intensity measured. Historically, the 
potential effect of truncation errors was identified by 
Alexander & Smith (1962) and discussed by them 
and subsequently by others (e.g. Ladell & Spielberg, 
1966; Kheiker, 1969; Young, 1969; Werner, 1971, 
1972; Einstein, 1974). However, in practice, correc- 
tion for this error source was largely ignored by 
structure analysts. It was in relation to an to/0 scan- 
mode monochromatization technique that Denne 
(1977a, b) derived a correction formula for the effect 
of truncation on the basis of a linear scan-range 
formula, assuming thereby that the effect was pro- 
gressive from 0 = 0  °. In a low-temperature study, 
Hope & Ottersen (1978) noted a systematic trend of 
the ratio Fo/Fc with increasing 0 angle which they 
ascribed to this form of truncation. They therefore 
used Denne's formula to apply corrections. 
Thereafter, Hope and co-workers and Hirshfeld and 
co-workers used Denne's correction procedure in 
their deformation studies. While generally the situ- 
ation was improved, they observe that, in some cases, 
the correction may have been insufficient. As dis- 
cussed above, Eisenstein & Hirshfeld (1983) came to 
the conclusion that their data had a strange 0 depen- 
dence not correctable by use of the Denne formula 
while Destro & Marsh (1987) tested Denne's formula 
but found it inadequate and devised their own pro- 
cedure. Even so, they had to invoke an additional 
0-dependent 'aberration function' to achieve a match 
of experimental and theoretical profiles. No details 
of the form of the 'aberration functions' were given. 

The present study offers a resolution of the difficulty 
by showing that the scan-range formula should be 
more complex than the simple linear formula and 
that, with this approach, one should be able to estab- 
lish a rational procedure for measurement which pro- 
vides for consistency over the operational range of 0. 

Failure to use a correct formula for scan range can 
have an effect not only on derived temperature factors 
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mainly associated with the high-angle region but also 
on parameters for extinction mainly associated with 
the low-angle region. If, due to the use of a linear 
formula, the scan range in the low-0 region is larger 
than it should be (see Fig. 2a), then the resultant 
estimates of integrated intensity and structure factors 
are affected similarly. As a result, the full effect of 
extinction on strong reflections in that region will be 
partially concealed (see also Mathieson, 1984a) and 
so the magnitude of correction for extinction will be 
underestimated. 

With computer control of diffractometers, there 
should be no difficulty in applying an appropriate 
mix of RMS and linear components to set the proper 
scan range with alteration of 0. However, the estab- 
lishment of the required basic experimental param- 
eters will necessitate careful measurement. Probably 
the most straightforward approach is by measurement 
of Ato, A20 distributions for a number of selected 
reflections (Mathieson, 1982). Such measurements 
would provide estimates of the individual component 
distributions - source and mosaic spread - while the 
wavelength distribution for the particular radiation 
can be established from published sources or derived 
from the Ato, A20 distributions (e.g. Mathieson, 
1984b). 

Burbank (1964) drew attention to a subtle feature 
of profile measurement which is associated with its 
generation by the convolution of various components. 
As the wavelength dispersion changes with 0, the 
contributions from the wavelength band to the con- 
voluted profile can change with the change in scan 
range so that the profile integrated intensity, con- 
sidered on a normalized basis, can change in magni- 
tude with 0, thus introducing a systematic error. Bur- 
bank notes that, according to this argument, one can 
only be certain of the wavelength band being constant 
if one uses balanced filters. The present analysis offers 
an alternative view concerning profile measurement. 
If the scan range is properly adjusted, the integrated 
intensity within the scan range is maintained constant 
with change in dispersion, on a normalized basis (see 
Table 1, column 6). The possibility of treating data 
collection in terms of bands with different but inter- 
nally consistent scan ranges and using common reflec- 
tions for interpolation has been mentioned earlier 
(Mathieson, 1982). 

A possible clue as to an explanation for the Fo/Fc 
curve above 0 = 60 ° may be derived from a study by 
Ohba, Sato, Saito, Ohshima & Harada (1983). They 
found that their estimates of certain high-angle Fo's 
were generally greater than the corresponding F¢'s 
and, after eliminating TDS as the source of the dis- 
crepancy, they concluded that Huang scattering was 
the probable cause of the difference. In general, 
Huang (1947) scattering is associated with a reduction 
of the Bragg peak and an increase in diffuse scattering 
adjacent to the Bragg peak which would produce an 

effect opposite to that observed. However, if the 
Huang scattering is markedly anisotropic (due to 
anisotropic strains) then a certain proportion of the 
reflections could be observed to have a greater diffuse 
contribution close under the Bragg profile and a lesser 
contribution in the background region [see Fig. 2 of 
Harada (1988)]. In the lower-0 region, the population 
of reflections would be such that, on average, the 
Huang scattering would constitute a contribution to 
both peak and background regions. As one progresses 
into the higher-0 region, the population of observable 
reflections drops away rapidly so that it is only the 
more intense reflections with lesser background that 
are measured. It is presumably these that contribute 
to the marked change in the ratio B / P  recorded by 
Eisenstein & Hirshfeld. 

In the case of Eisenstein & Hirshfeld, the data were 
collected at liquid-N2 temperature so the role of TDS 
would be minor while extra diffuse scattering from 
lattice defects (possibly produced and 'locked in' by 
the original cooling process) would not of course be 
reduced by the low temperature of the specimen. 

So we conclude that the evidence points to two 
causes for the discrepancies in the Eisenstein & Hirsh- 
feld data. The main one, principally affecting the 
lower-angle region, is due to the use of a linear 
scan-range formula rather than a RMS formula while 
the other, more significant at higher angles but less 
significant in gross magnitude, is ascribed to the selec- 
tive effect of Huang scattering. The two effects overlap 
and, particularly in the higher region, change their 
balance with one going negative and the other going 
positive, leading to the gross swings in the region 
0 = 50 to 76 °. 

I am greatly beholden to Dr J. K. Mackenzie for 
the convolution program and for much discussion on 
various aspects of this paper and to Dr A. W. 
Stevenson for the plot of the ellipse, and to both for 
their helpful suggestions on the text. Any misinterpre- 
tations arising from such discussion are however 
wholly my responsibility. 
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Abstract 

Electron diffraction patterns of 45,~ thick two- 
dimensional crystalline arrays of a cell membrane 
protein, bacteriorhodopsin, have been recorded at 
two electron voltages, namely 20 and 120kV. Sig- 
nificant intensity differences are observed for Friedel 
mates at 20 kV, but deviations from Friedel symmetry 
are quite small at 120 kV. It does not seem likely that 
the measured Friedel differences can be accounted 
for by complex atomic structure factors, by curvature 
of the Ewald sphere, or by effects that might occur 
as a result of inelastic scattering (absorption). It is 
therefore concluded that dynamical diffraction within 
the single molecular layer of these crystals is respon- 
sible for the observed Friedel differences. The results 
are useful in estimating the maximum specimen thick- 
ness for which the kinematic approximation may be 
safely used in electron crystallography of biological 
macromolecules at the usual electron voltage of 
100 kV, or even at higher voltages. The results show 
that the Friedel differences are independent of resol- 
ution and this opens up the possibility that dynamical 
effects occurring at lower voltages might be used to 
phase higher-voltage kinematic diffraction intensities. 

Introduction 

Bacteriorhodopsin is a protein of molecular weight 
27 000 which naturally forms well ordered monolayer 
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crystals within the cell membrane of Halobacterium 
halobium. These crystalline patches, known as purple 
membrane, are readily isolated from the bacteria 
as small membrane fragments only 45A thick 
(Blaurock, 1975; Henderson, 1975) and typically 
0.3 I~m 2 in area. Single-crystal X-ray diffraction pat- 
terns cannot be measured from these specimens 
because of the small size of the purple membrane 
fragments. Electron diffraction and high-resolution 
electron microscopy therefore represent the method 
of choice for a crystallographic structure analysis of 
the constituent protein, bacteriorhodopsin. Progress 
in this structure analysis, which includes a three- 
dimensional density map at 6A and a two- 
dimensional projection at 3-5 ~ resolution, has been 
reviewed by Baldwin, Ceska, Glaeser & Henderson 
(1987). 

The use of electron diffraction and high-resolution 
image data to produce Coulomb potential density 
maps has so far assumed that the electron-specimen 
interaction can be described to a satisfactory degree 
of accuracy by the weak-phase-object (WPO) 
approximation (Hoppe, 1970; Erickson, 1974; Amos, 
Henderson & Unwin, 1982). The WPO approximation 
is a simplified version of the single-scattering kine- 
matic approximation, in which the Ewald sphere is 
approximated as a plane (Glaeser, 1985). Other fac- 
tors that are ignored in the WPO approximation, but 
which can affect the experimental data, include 
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